pandas.ExcelFile.parse¶
- ExcelFile.parse(sheetname, header=0, skiprows=None, skip_footer=0, index_col=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, chunksize=None, **kwds)¶
Read an Excel table into DataFrame
Parameters: sheetname : string or integer
Name of Excel sheet or the page number of the sheet
header : int, default 0
Row to use for the column labels of the parsed DataFrame
skiprows : list-like
Rows to skip at the beginning (0-indexed)
skip_footer : int, default 0
Rows at the end to skip (0-indexed)
index_col : int, default None
Column to use as the row labels of the DataFrame. Pass None if there is no such column
parse_cols : int or list, default None
- If None then parse all columns
- If int then indicates last column to be parsed
- If list of ints then indicates list of column numbers to be parsed
- If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)
na_values : list-like, default None
List of additional strings to recognize as NA/NaN
keep_default_na : bool, default True
If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to
verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns
Returns: parsed : DataFrame
DataFrame parsed from the Excel file